
Brief for HTTP Commands for KOD3000

It is an implementation of a RESTful service on our karaoke player, using JSON

object as data exchange format.

| KOD-3000 Host | <-----------> APP (i.e. Mobile devices/PC/any network connected client device)

IP:192.168.1.235

If the IP of KOD-3000 player is 192.168.1.235, the HTTP command description as

below:

Get the model name command

 http://192.168.1.235/machine.cgi

Return value:

{ "OK": { "type": "KOD3000" } }

Get the current playlist command

 http://192.168.1.235/songq_list.cgi

Return value sample:

{ "OK": { "snos": [16858, 83339, 325294], "nsongs": 3 } }

It means that there are 3 songs (song number:16858,83339, and 325294) in

the playlist

Insert the song number 16590 to the top of the playlist

 http://192.168.1.235/songq_ins.cgi?sno=16590&pos=0

Return value:

{ "OK": { "pos": 0 } }

Pause Command

 http://192.168.1.235/pause.cgi

Return value:

{ "OK": {} }

Next Command

 http://192.168.1.235/next.cgi

Return Value:

if exists more songs,

{ "OK": {} }

if there is no any song in the playlist

{ "ERROR": "song queue is empty" }

Repeat Command

 http://192.168.1.235/repeat.cgi

Return value:

If it is playing a song

{ "OK": {} }

If it isn’t playing a song

{ "ERROR": "no playing song" }

Turn up/down the volume command
the APIs is a relative index adjusting,we just provide a step (+1,-1) adjusting

method, for the sake of the same as remote control.

Turn up the volume command volume+1

 http://192.168.1.235/adjustd.cgi?cate=volume&val=1

(if the current volume is 90 in the player, and you send this sample command,

the volume will become 95)

Return value:

If it is playing a song

{ "OK": {} }

If it isn’t playing a song

{ "ERROR": "no playing song" }

Turn down the volume command Volume-1

 http://192.168.1.235/adjustd.cgi?cate=volume&val=-1

(if the current volume is 90 in the player, and you send this sample command,

the volume will become 85)

Return value:

If it is playing a song

{ "OK": {} }

If it isn’t playing a song

{ "ERROR": "no playing song" }

Turn up/down the volume of MIC
the APIs is a relative index adjusting, we just provide a step (+1,-1) adjusting

method, for the sake of the same as remote control.

Turn up the volume of MIC mic+1

http://192.168.1.235/adjustd.cgi?cate=mic&val=1&id=0

Set the mic id,(id 0 means MIC1, id 1 means MIC2)

for example, if you wanna adjust MIC2, the command as below

http://192.168.1.235/adjustd.cgi?cate=mic&val=1&id=1

Return value:

If it is playing a song

{ "OK": {} }

If it isn’t playing a song

{ "ERROR": "no playing song" }

Turn down the volume of MIC mic-1

http://192.168.1.235/adjustd.cgi?cate=mic&val=-1&id=0

turn down the volume of MIC1

Return value:

If it is playing a song

{ "OK": {} }

If it isn’t playing a song

{ "ERROR": "no playing song" }

Adjusting Audio MPX command
Audiompx+1

http://192.168.1.235/adjustd.cgi?cate=audiompx&val=1

Return value:

If it is playing a song

{ "OK": {} }

If it isn’t playing a song

{ "ERROR": "no playing song" }

* audiompx-1

http://192.168.1.235/adjustd.cgi?cate=audiompx&val=-1

Return value:

If it is playing a song

{ "OK": {} }

If it isn’t playing a song

{ "ERROR": "no playing song" }

Toggle to mute/umute command

http://192.168.1.235/adjustd.cgi?cate=mute&val=1

Return value:

If it is playing a song

{ "OK": {} }

If it isn’t playing a song

{ "ERROR": "no playing song" }

